
ABSTRACT

This paper describes a formal approach to automating domain-
oriented software design. The formal approach ensures that a us-
er’s problem specification is correctly implemented, given a vali-
dated domain theory. A declarative domain theory defines the
semantics of a domain-oriented specification language and its re-
lationship to implementation-level subroutines. Formal specifica-
tion development and reuse is made accessible through an
intuitive graphical interface that incorporates the advantages of
structured editors and visual programming environments at the
specification level.

This approach has been implemented in AMPHION, a generic
KBSE system that automates component-based programming
from specifications. AMPHION has been applied to the domain of
solar system kinematics; other NASA applications are under de-
velopment. AMPHION enables space scientists to develop, modify,
and reuse specifications an order of magnitude more rapidly than
manual program development. Program synthesis is efficient and
completely automatic. Both sequential and iterative programs are
synthesized.

INTRODUCTION

This paper describes AMPHION1: an automated software de-
sign tool. Like corresponding mechanical or VLSI design tools,
AMPHION is based on the underlying mathematics of its design
domain, i.e. the mathematics behind software. “Formal methods”
are the application of mathematical techniques to software engi-
neering. A classical use of formal methods is to prove that a pro-
gram correctly implements its specification. This requires a
mathematical theory for the programming language, a mathemat-

1. AMPHION was Zeus’s son who used his magic lyre to charm the stones
around Thebes into position to form the city’s walls.

ical theory for the specification language, and a mathematical the-
ory of correct implementations. When these ingredients are
available, then the statistical assurance derived through empirical
software testing can be replaced by the mathematical certainty de-
rived through logical proof.

Formal methods are attracting substantial interest from cus-
tomers requiring high-assurance software. However, there is of-
ten a high price to pay: the mathematical techniques in formal
methods require advanced training and take considerably more re-
sources than the largely informal techniques usually employed in
software engineering. Thus a long-term research goal has been the
automation of formal methods.

In fact, not only could automated formal methods be used to
verify existing software, but in principle they could be used to
synthesize new software, just as automatic logic synthesis is used
in digital VLSI design. Instead of proving that an existing pro-
gram correctly implements its specification, one method of pro-
gram synthesis involves proving that there exists an output that
satisfies the specification for every valid input. One type of proof
– a constructive proof – entails constructing an expression, pa-
rameterized on the input, that describes the output. When this con-
structed expression is restricted to the terms of a programming
language, then this expression is itself a correct program. The
constructive proof approach to program synthesis is calleddeduc-
tive synthesis;a tutorial article can be found in Manna and
Waldinger [4].

 Automatic deductive synthesis would seem to solve the pro-
gramming problem. Frameworks for automatic deductive synthe-
sis were developed over twenty-five years ago (see Green [9] and
Manna and Waldinger [4]). However, there are still numerous
difficulties, both from a technical viewpoint and from a human in-
teraction viewpoint. Up to now, automatic deductive synthesis
has had little impact on real software engineering practice.

This paper describes an application of automatic deductive
synthesis that overcomes these difficulties for component-based

AUTOMATIC DOMAIN-ORIENTED SOFTWARE DESIGN

Thomas T. Pressburger

 NASA Ames Research Center
Moffett Field, California

 USING FORMAL METHODS

 Michael R. Lowry
 Recom Technologies

software engineering. In component-based software engineering,
the implementation language is not restricted to the primitives of
a programming language; the implementation language also in-
cludes pre-existing components from a library. These compo-
nents typically embed much of the algorithmic complexity in a
software application, thus making software development easier –
for both humans and machines. Component-based programming
also typically has a strong application-domain orientation. This
means that the specification language can be tailored to a particu-
lar application domain, thus overcoming some of the human inter-
action difficulties previously associated with general-purpose
specification languages. Applying automatic deductive synthesis
to component-based programming also complements other appli-
cations of formal methods to high-assurance software. In particu-
lar, manual or interactive formal methods could be applied to
verifying or generating the component library itself. These proofs,
which can be more complex than is feasible to generate complete-
ly automatically, are then reused as lemmas when the automatic
system deductively synthesizes a program that calls these compo-
nents.

Previous papers have described the domain theory structure
required in an AMPHION application [3], the user interface [3], the
mathematical basis for AMPHION’s program synthesis [8], and the
mechanisms for making this synthesis efficient, along with empir-
ical timing results of the program synthesis subsystem in AM-

PHION [2]. The next section of this paper presents an overview of
AMPHION, so refer to these other papers for more details.

For component-based programming, many problems only re-
quire simple data-flow composition of components, as described
in previous papers. However, some problems require more com-
plicated composition of components. The Iterative Program Syn-
thesis section of this paper describes an extension of AMPHION’s
previous capabilities that generates iterative programs. It is based
on the concept of higher-order components, typically implement-
ed as iterative drivers, that take other components as arguments.
The example used throughout this third section is related to plan-
ning observations of the impact sites on Jupiter of the Shoemaker-
Levy comet fragments.

AMPHION OVERVIEW

AMPHION is a generic architecture that is specialized to a par-
ticular domain and component library through a domain theory
and domain-specific theorem-proving tactics. As the first applica-
tion domain for AMPHION, solar system kinematics was chosen,
as implemented in the SPICELIB subroutine library developed by
the Navigation Ancillary Information Facility (NAIF) at NASA’s
Jet Propulsion Laboratory (JPL). NAIF is charged with developing
software to support planning and data analysis for interplanetary
scientific missions; in particular, software that computes the geo-
metric information needed to plan and interpret observations.
SPICELIB functionality includes access to ephemeris data (position
and velocity of solar system objects as a function of time) and ex-
tensive routines for analytic geometry. AMPHION prototypes for
other NASA application domains are under development, in par-
ticular the domain of numerical aerodynamic simulation and the
domain of space shuttle flight planning.

The objective of AMPHION is to enable users familiar with the

basic concepts of an application domain to program at the level of
abstract domain-oriented problem specifications. This objective
is similar to that for application generators. Like other knowl-
edge-based approaches, AMPHION’s automated reasoning tech-
niques are more powerful than the limited compiler-based
techniques used in application generators. This enables the speci-
fication language to be more abstract, and hence at a further con-
ceptual distance from the details of the implementation language.
In contrast to previous automated knowledge-based approaches to
domain-specific software design tools, AMPHION is unique in be-
ing based on formal specifications and formal methods.

Formal specifications provide an abstract and unambiguous
representation of a user’s requirements. Formal methods ensure
that a program is a correct implementation of a formal specifica-
tion. AMPHION addresses several difficulties that have impeded
formal frameworks being used in practice:

First, users without a background in formal mathematics find
that developing a formal problem specification is usually more
difficult than developing code manually. In part, this is due to the
need to formalize the domain concepts necessary to state a prob-
lem. Our approach separates the activity of domain formalization
from the activity of individual problem formalization.

Second, users are also unaccustomed to the syntax and nota-
tion of mathematical logic, which necessarily underlies any for-
mal specification language. AMPHION incorporates techniques
from visual programming and structured editing to guide users in
creating domain-oriented diagrams that are then translated into
formal specifications. AMPHION also includes a number of effec-
tive knowledge-based mechanisms, all driven by a declarative do-
main theory, that aid a user in formulating a problem while
ensuring that the resulting specification is valid [3].

Third, program synthesis must be totally automatic for users
without an extensive background in formal methods. The combi-
natorial explosion inherent in automated reasoning for general
purpose program synthesis has prevented completely automatic
deductive program synthesis. AMPHION avoids this combinatorial
explosion through automatic theorem proving tactics suitable for
the specialized task of composing subroutines [2].

AMPHION User Experience

AMPHION is more than a research prototype: it has already un-
dergone substantial testing with planetary scientists over a period
of six months and is currently undergoing further enhancements
in preparation for distribution to the large NAIF user community.
The specification acquisition component is easy to learn: users are
able to develop their own specifications after only an hour’s tuto-
rial.

Observations over six months indicate at least an order of
magnitude improvement for specification development over man-
ual program development. Programs which would take the better
part of a day to develop for someone only casually familiar with
the subroutine library can be specified in fifteen minutes after the
tutorial introduction to AMPHION. Experienced AMPHION users
can develop specifications in five minutes for programs that
would take the subroutine library developers an hour to code man-
ually.

AMPHION’s program synthesis component is robust and effi-

cient, and appears to be the first use in practice of totally automat-
ic deductive program synthesis. AMPHION synthesizes, from
specifications, one- to two-page FORTRAN77 programs consisting
of one- to three-dozen calls to SPICELIB subroutines in just a few
minutes. In over a hundred programs generated by AMPHION to
date for the NAIF domain, the CPU time to synthesize a program
never exceeded five minutes of CPU time.

AMPHION Architecture Overview

Figure 1 presents a flow diagram of AMPHION, where the dot-
ted lines enclose subsystems, the rectangles enclose major com-
ponents, and the rounded boxes enclose data. AMPHION is applied
to a new domain by defining a domain theory and theorem-prov-
ing tactics. The domain theory is automatically translated into ta-
bles that drive the graphical user interface. The domain theory
together with the theorem proving tactics are used by the SNARK

theorem prover (see Stickel, et. al. [8]) both to check a specifica-
tion and also to generate an applicative version of the program.
These three sources of information — the domain theory, derived
user interface tables, and theorem proving tactics — constitute the
domain specific subsystem of an AMPHION application.

The graphical user interface and the specification checker con-
stitute the specification acquisition subsystem. AMPHION enables
a user to interactively build a diagram representing a formal prob-
lem specification, such as Figure 2. A diagram is an alternate sur-
face syntax for a formal problem specification stated in
mathematical logic with the predicates and functions from the do-

USERDomain
Theory

Theorem
Proving
Tactics

User Interface
Tables

Formal
Specification

Applicative
Program

Interface
Compiler

Fortran
Converter

Specification
Checker

GUI

SNARK

CODE

Subroutine
Library

Domain Specific Subsystem Specification Acquisition Subsystem

Program Synthesis Subsystem

main theory. AMPHION checks a specification by attempting to
solve an abstracted version of the problem. If AMPHION cannot
solve the abstracted problem, it employs heuristics to localize the
problem in the specification and give the user appropriate feed-
back. For example, if an output or intermediate variable cannot be
solved in terms of the input variables, then that variable is under-
constrained.

The program synthesis subsystem consists of: (1) a theorem-
prover based generator of an applicative program; and (2) a con-
verter of the applicative program into the target programming lan-
guage (e.g., FORTRAN77 for the JPL SPICELIB subroutine library).
After a valid specification is developed, it is converted into a the-
orem to be proved. The input variables of the specification are
universally quantified and the output variables are existentially
quantified within the scope of the input variables. The English
schematic for these theorems is: “For allvalid inputs, there is an
output satisfying theinput-output relation.” In any particular the-
orem,valid andinput-output relation would be definitions for the
particular problems in the specification language.

An applicative program is synthesized through constructive
theorem proving [4]. Conceptually, an applicative program is
equivalent to a data flow graph. During a proof, substitutions are
generated for the output variables through unification and equali-
ty replacement. The substitutions for the output variables are con-
strained to be terms in the applicative target language whose
function symbols correspond to the subroutines in a library. Uni-
fication is a type of two-way pattern matching used in theorem
proving. For example, if part of a problem specification matches

FIGURE 1: AMPHION FLOW DIAGRAM

the specification of a component, then unification would match
them together and replace the output variable with an expression,
part of which would be a subexpression containing the function
symbol corresponding to the component. Equality replacement is
particularly useful in rewriting abstract specification-level con-
structs into implementation-level constructs closer to the compo-
nent level.

The expressions for the output variables are then translated
into the output programming language through program transfor-
mations written in REFINE [6]. One set of transformations intro-
duces a variable to hold the value of each subexpression, thus
“flattening” the structure of an expression into a sequence of func-
tion applications to variables. This also has the effect of combin-
ing common subexpressions. Another set of transformations
handles subroutines with multiple outputs. Only the very last
stage of the translation is programming-language specific: vari-
able declarations and the sequence of subroutine calls are gener-
ated in the syntax of the target language. So it is not difficult to
retarget AMPHION to a new programming language. For example,
in applying AMPHION to the shuttle flight design domain, we were
able to generate C++ programs in a few days.

ITERATIVE PROGRAM SYNTHESIS

The straight-line composition of SPICE subroutines provides
a basic capability for solving NAIF domain problems that don’t re-
quire search. These problems often have the form “Does situation
S occur at timet” or “What is the value off at timet”. See [2,8]
for a description of AMPHION’s capabilities for generating
straight-line code. However, space scientists frequently want so-
lutions to ‘when’ questions, such as “When does situation S occur

in time interval ” or “When doesf take on a minimum

value in the time interval ”. These problems require iter-

ative search techniques. This section describes an extension to our
approach for component-based automatic programming that syn-
thesizes iterative search code. The basic idea is to extend the com-
position obtained through data flow connections with the
composition obtained through nesting one operation within an-
other operation. To be precise, we extend the first-order opera-
tions which only take data values as inputs with second-order
operations calledfunctionalswhich can take other operations as
inputs. These functionals are implemented as iterative drivers that
repeatedly call the first-order operations.

The next subsection describes the second-order operations for
the NAIF domain. The following subsection describes the dia-
gram, logic, and FORTRAN77 representations for applying a sec-
ond-order operation to a first-order operation. The following
subsection describes the transformations and automated inference
techniques which synthesize component-based Fortran imple-
mentations given the graphical specification developed by an end-
user. The last subsection describes the program synthesis and do-
main knowledge needed to extend these techniques to produce
more robust and efficient code.

t1 t2,[]

t1 t2,[]

PERCY: Functionals for Iterative Search

Our approach of composition-based program synthesis starts
with components developed and validated by experts. The JPL
NAIF group developed a set of iterative FORTRAN77 drivers called
PERCY that find the set of times when a particular situation occurs.
A situation is either:

1. A predicate holding true - for example, an angle being with-
in a specified range.

2. A function achieving (or approaching) an absolute (or rela-
tive) extrema - for example, the distance between a planet
and one of its moons reaching a local minima.

PERCY represents a set of times by thewindow datatype, which
is a set of non-overlapping closed time intervals:

where .

(A point in time is represented by an interval with identical end-

points, e.g., .) The search operations over windows are

the PERCY functionals; different functionals correspond to differ-
ent situation types. PERCY also provides basic set-theoretic oper-
ations for manipulating windows such as intersecting two
windows and deciding whether one window is a sub-window of
another window.

PERCY was developed under contract to the Space Telescope
Science Institute as a tool used in scheduling observations by the
Hubble Space Telescope (HST). The NAIF group also built a com-
mand-line interface to PERCY called MOSS (Moving Object Sup-
port System, the name referring to the fact that only solar system
objects change position in astronomical observations against the
fixed background of the stars). A MOSS user specifies an input
window, a situation type, and one of a set of predefined predicates
or functions (about two dozen); such as eclipse, occult, distance,
or angle separation. The result of the command execution is an-
other window. This window could be used directly for scheduling
HST observations, or could be given as an input window to anoth-
er MOSS command. Typically, a MOSS user starts a session with
an initial window consisting of a single time interval, and then re-
fines this window with successive searches to find good observa-
tion times. During this refinement process the MOSS user can also
apply an operation such as window intersection, or the discarding
of time intervals shorter than the minimum time needed to set up
an HST observation.

To carry out this refinement process, a MOSS user may need
substantial mathematical and astronomical knowledge to refor-
mulate a problem into an efficient sequence of search commands;
in particular, because each command is restricted to the pre-
defined functions and predicates. Extending MOSS with a new
predefined function or predicate would be a laborious process re-
quiring many changes to the code in the MOSS system. AMPHION

also provides access to the PERCY routines, but, in contrast to
MOSS, additionally provides the capability to automatically gen-
erate code for arbitrary functions and predicates called by the
functionals. This by itself makes the refinement process more
flexible for generating good windows for HST scheduling and
other NAIF applications. Future work, described in the section on
Knowledge-Based Program Optimization, will include program
synthesis techniques that incorporate domain knowledge in order

t1 t2,[] … t2n 1– t2n,[], ,{ } t1 t2≤ … t2n 1–< < t2n≤

t1 t2=

to completely automate the window refinement process.

Diagram, Logic, and Fortran Representations

This subsection describes the representations, particularly for
functionals and functional applications, at the diagram specifica-
tion level, at the logic specification level, and at the Fortran pro-
gram level generated by AMPHION. The example problem used
throughout is for planning observations by the Galileo spacecraft
of impact sites on Jupiter, such as those created by the Shoemak-
er-Levy comet in July of 1994. The problem is to find the times
within a given time-interval when the angle of sunlight at the
point on Jupiter below the spacecraft is within a specified range.
The idea is that a low angle of sunlight makes for long, high-relief
shadows of the vertical structures of an impact site and its associ-
ated atmospheric disturbances.

Diagram Representation. The diagram representation has
been extended with functionals corresponding to the situation
types provided in PERCY. For example, the functionallocal-max-
times, given a window and a real-valued function on time, returns
a window denoting a set of points where the function attains a lo-
cal maximum. Another example is the functionalfilter which,
given a window and a predicate on time, returns the subwindow
representing those times for which the predicate holds. This paper
will concentrate on thefilter functional.

Figure 2 shows the diagram that specifies the problem of de-
termining good observation times of impact sites on Jupiter. The
icons in the diagram represent variables, and the edges in the dia-
gram represent relationships between variables. A user can mod-
ify the visual appearance of icons and edges through graphical
editors, and generalize these preferences to types of objects and
relationships. The convention followed for many of the edges in
Figure 2 is that they are directed from a variable to another vari-
able, the latter being defined in terms of the former, and possibly
other, variables via the application of a single domain function.
The label on the edge denotes the parameter of the domain func-
tion being instantiated. For example, in the upper right corner the
Boolean variableAngle-Within-Range?is defined as the Boolean
conjunction of the variablesAngle-Above-Low?and Angle-Be-
low-High? The labels on the directed edges are the parameter
names for Boolean conjunction:conjunct1andconjunct2.In Fig-
ure 2, photons, rays, and surface-normals do not follow this con-
vention for edge direction. Note that input and output variables
are denoted by chevrons with arrows going in or out. These vari-
ables are always attached to a corresponding abstract variable
which they represent through a representation (repn) function.

 The trapezoidal iconTime-Window-from-Start-to-Endde-
notes the operation that constructs the initial window from two in-
put variables to the Fortran program,Time-Coord-Start andTime-
Coord-End. The trapezoidal iconTime-Window-When-Angle-is-
in-Range denotes thefilter operation that searches through the ini-
tial window for the intervals when the predicate holds. The pred-
icate is specified in the subdiagram consisting of the lower half
and right half of Figure 2 by defining the relationship of theinde-
pendent variable,TGalileo, to thedependent variableAngle-with-
in-Range?. If the scientist was interested in a program that only
computed this predicate for a particular point of time (as opposed
to a time window), then the independent variable would be an in-

put to the program and the dependent variable would be the out-
put. Note that the subdiagram has two additional inputs,Radians-
Low andRadians-High; these describe the desirable range of an-
gles, and are inputs to the entire program. Since the functionalfil-
ter only takes a predicate with a single dependent variable, these
additional inputs are encapsulated through environment variables
in the logic representation of the predicate. These variables also
appear in the main FORTRAN77 program that calls the predicate as
an entry subroutine. The output specified in the diagram isTime-
Window-Repn-When-Angle-is-in-Range: it denotes the subwin-
dow of the initial window where the predicate holds true.

Logic Representation. The logic representation created by
AMPHION for the specification diagram in Figure 2 is shown in
Figure 3. The logic representation makes use of first-order logic
and thelambda calculus,which is a mathematical notation de-
vised for complex function expressions such as functionals, func-
tional applications, and locally-defined functions without a global
name. In this notationlambda is used for binding input variables,
while find is used for binding output variables.Existsis used for
binding variables which are neither input nor output—it is the
standard existential quantifier of first-order logic. Specification
diagrams are equivalent to logic representations of the following
form.

lambda (inputs)
 find (outputs)
 exists (intermediates)
 conjunct1 & .. & conjunctN

Each conjunct is either a constraint, , or an

equality defining a variable through a function application,

.

An application of the filter functional to a window and a pred-
icate is represented by an equality with the following form in the
lambda calculus:

= filter(,

lambda ()

 find ()

exists ()

The embeddedlambda expression denotes a locally-defined

function whose input ist, and whose output is the boolean .

Its form is the same as the logic representation for an entire spec-
ification diagram. The predicateP is itself a set of conjuncts. Note

that the predicateP may depend not only on the variablest, ,

and existentially quantified variables ; but also on theenvi-

ronment in which the embeddedlambda expression is situated. In
logic, the environment of a subexpression is the set of variables
which are bound in expressions that contain the subexpression.

The environment of the embeddedlambda expression above

includes the input variables to the problem,inputs; the output
variables of the problem,outputs; and also the existential vari-
ables,intermediates. In the Galileo specification, these embedded

P v1 … vm, ,()

vk f v1 … vk, ,()=

windowout windowin

t

xdep

x∃ P t xdep x∃ xenv, , , 
 

xdep

xdep

x∃

xenv

return a logical as output.PRSOLV itself returns as output the sub-
window consisting of the time intervals for which the subroutine
returns logical true. The behavior ofPRSOLV is also affected by
two other parameters: the size of the time step used to sample the
window looking for changes between logical true and logical
false, and the desired accuracy tolerance for the location of the
endpoints of the time intervals. These will be discussed further in
the section on Knowledge-Based Program Optimization.

Thelambda expression embedded in thefilter operation is rep-
resented in FORTRAN77 as anENTRY subroutine with a single in-
put, a time, and a single output, a Fortran logical. TheENTRY
subroutineSOLARI implements the predicate that determines
whether the incidence angle is in the range betweenRLOWand
RHIGH at a given time.SOLARI references variablesRLOWand
RHIGH which are set by the main routine.

Program Synthesis

The first step in the synthesis of a program from the specifica-
tion diagram is translating the diagram into its logic representa-
tion. The translation of an icon that denotes a definition of a

variables include the inputsRadians-LowandRadians-High.
 Some programming languages such as Lisp (which was mod-

eled after the lambda calculus), providelexical closures [1] for
constructing locally-defined, unnamed functions whose value de-
pends on variables in their environment. The next subsection de-
scribes how to implement a closure in FORTRAN77 for the PERCY

functionals; analogous techniques would be used for C and similar
programming languages.

Fortran77 Representation. The final FORTRAN77 pro-
gram,FNDTMS is shown in Figure 4. The input and output variable
names are transformed from those in the diagram and logic repre-
sentation to be no more than six characters. The body ofFNDTMS
first declares all the variables required for executing the program,
including theENTRY subroutineSOLARI corresponding to the
embedded lambda. In essence, all the environment variables for
the embedded lambda are promoted into the main routine.FNDT-
MS then calls PERCY window routines in order to set up the initial
window. The PERCY subroutine that implements thefilter func-
tional is calledPRSOLV. Its input arguments are a window and a
subroutine. This subroutine in turn must take a time as input and

File Edit Graph Spec Preferences Help

Time-Window-Repn-When-Angle-Is-in-Range

UTC-Start

UTC-Calendar

UTC-End

Time-EndTime-Start

Time-Window-from-Start-to-End

Time-Window-When-Angle-Is-in-Range

Radians-Low Radians-High

Angle-Within-Range?

Angle-High

Angle-Below-High?

Angle-Low

Angle-Above-Low?

Solar-Incidence-Angle

SurfaceNormal

Photon-Sun-Jupiter

Ray-SubSpacecraft-Sun

SubSpacecraft-Point

Galileo-Event
Photon-Jupiter-Galileo

TJupiter Jupiter

Jupiter-Body

TGalileo Galileo-Orbiter

TSun

Sun

Sun-Body

repn

time-sysrepn time-sys repn

end-timestart-time

dependent-var

independent-var

window

repn repn

conjunct2conjunct1

greater

lesser
lesser

greater

between-ray2 between-ray1

at-point

normal-to

to

from

towards

from

nearest on

at-time location-of

to from

at-time
body-id

at-time

body-id

FIGURE 2: DIAGRAM OF GALILEO PROBLEM CREATED INTERACTIVELY WITH AMPHION.

(LAMBDA (UTC-End UTC-Start Radians-Low Radians-High)
 (FIND (Time-Window-Repn-When-Angle-Is-In-Range)
 (EXISTS (Time-Start Time-End Time-Window-from-Start-to-End Time-Window-When-Angle-Is-in-Range)
 (AND (= Time-Window-Repn-When-Angle-Is-In-Range
 (PERCY-TIME-WINDOW-REPN (TIME-WINDOW Time-Window-When-Angle-Is-in-Range)))
 (= UTC-Start
 (TIME-TO-COORDINATES (TIME Time-Start) (TIME-SYSTEM UTC-Calendar)))
 (= UTC-End
 (TIME-TO-COORDINATES (TIME Time-End) (TIME-SYSTEM UTC-Calendar)))
 (= Time-Window-from-Start-to-End
 (WINDOW-CREATE (TIME Time-Start) (TIME Time-End)))
 (= Time-Window-When-Angle-Is-in-Range
 (FILTER
 (TIME-WINDOW Time-Window-from-Start-to-End)
 (LAMBDA (TGalileo)
 (FIND (Angle-Within-Range?)
 (EXISTS (Angle-Low Angle-Above-Low? Angle-High Angle-Below-High?
 Ray-SubSpacecraft-Sun TJupiter TSun
 Photon-Sun-Jupiter Photon-Jupiter-Galileo Jupiter-Body Sun-Body
 Galileo-Event SubSpacecraft-Point SurfaceNormal Solar-Incidence-Angle)
 (AND (= Radians-Low
 (ANGLE-TO-RADIANS (ANGLE Angle-Low)))
 (= Angle-Above-Low?
 (ANGLE-COMPARISON (ANGLE Angle-Low) (ANGLE Solar-Incidence-Angle)))
 (= Ray-SubSpacecraft-Sun
 (TWO-POINTS-TO-RAY (POINT SubSpacecraft-Point) (BODY Sun-Body)))
 (= Sun-Body
 (BODY-ID-AND-TIME-TO-BODY (BODY-ID Sun) (TIME TSun)))
 (= Photon-Sun-Jupiter
 (TWO-EVENTS-TO-PHOTON (BODY Sun-Body) (BODY Jupiter-Body)))
 (= Jupiter-Body
 (BODY-ID-AND-TIME-TO-BODY (BODY-ID Jupiter) (TIME TJupiter)))
 (= Photon-Jupiter-Galileo
 (TWO-EVENTS-TO-PHOTON (BODY Jupiter-Body) (EVENT Galileo-Event)))
 (= Galileo-Event
 (EPHEMERIS-OBJECT-AND-TIME-TO-EVENT
 (SPACECRAFT-ID Galileo-Orbiter) (TIME TGalileo)))
 (= SubSpacecraft-Point
 (ELLIPSOID-POINT-NEAREST-POINT
 (BODY Jupiter-Body) (EVENT Galileo-Event)))
 (= SurfaceNormal
 (SURFACE-NORMAL-RAY (BODY Jupiter-Body) (POINT SubSpacecraft-Point)))
 (= Solar-Incidence-Angle
 (TWO-RAYS-TO-ANGLE (RAY SurfaceNormal) (RAY Ray-SubSpacecraft-Sun)))
 (= Radians-High
 (ANGLE-TO-RADIANS (ANGLE Angle-High)))
 (= Angle-Below-High?
 (ANGLE-COMPARISON (ANGLE Solar-Incidence-Angle) (ANGLE Angle-High)))
 (= Angle-Within-Range?
 (BOOLEAN-AND
 (BOOLEAN Angle-Above-Low?) (BOOLEAN Angle-Below-High?)))))))))))))

FIGURE 3: AMPHION TRANSLATION INTO LOGIC OF FIGURE 2.

 SUBROUTINE FNDTMS (UTSTR, UTEND, RLOW, RHIGH, WNAIR)

C Input Parameters
 DOUBLE PRECISION UTCSTR
 DOUBLE PRECISION UTCEND
 DOUBLE PRECISION RLOW
 DOUBLE PRECISION RHIGH
C Output Parameters
 INTEGER LBCELL
 PARAMETER (LBCELL = -5)
 INTEGER WNSIZE
 PARAMETER (WNSIZE = 100)
 DOUBLE PRECISION WNAIR (LBCELL:WNSIZE)
C Variable Declarations
 DOUBLE PRECISION ETSTR
 DOUBLE PRECISION ETEND
 DOUBLE PRECISION WNINIT (LBCELL:WNSIZE)

C Declarations for ENTRY subroutine SOLARI
C Input Parameters
 DOUBLE PRECISION ET
C Output parameters
 LOGICAL ANWIRA
 Function Declarations
 DOUBLE PRECISION VSEP
C Parameter Declarations
 INTEGER JUPITE
 PARAMETER (JUPITE = 599)
 INTEGER GALIL1
 PARAMETER (GALIL1 = -77)
 INTEGER SUN
 PARAMETER (SUN = 10)
C Variable Declarations
 DOUBLE PRECISION ANGLEI
 DOUBLE PRECISION RADJUP (3)
 DOUBLE PRECISION PVGALI (6)
 DOUBLE PRECISION LTJUGA
 DOUBLE PRECISION V1 (3)
 DOUBLE PRECISION X
 DOUBLE PRECISION PVJUPI (6)
 DOUBLE PRECISION LTSUJU
 DOUBLE PRECISION MJUPIT (3, 3)
 DOUBLE PRECISION V2 (3)
 DOUBLE PRECISION X1
 DOUBLE PRECISION DV2V1 (3)
 DOUBLE PRECISION PVSUN (6)
 DOUBLE PRECISION XDV2V1 (3)
 DOUBLE PRECISION V (3)
 DOUBLE PRECISION N (3)
 DOUBLE PRECISION PN (3)
 DOUBLE PRECISION DV2N (3)
 DOUBLE PRECISION XDV2N (3)
 DOUBLE PRECISION DXDV2V (3)
 DOUBLE PRECISION XDXDV2 (3)
C Dummy Variable Declarations

(omitted)

 CALL SSIZED (WNSIZE, WNAIR)
 CALL SCARDD (0, WNDAIR)
 CALL SSIZED (WNSIZE, WNINIT)
 CALL SCARDD (0, WNINIT)
 CALL UTC2ET (UTCSTR, ETSTR)
 CALL UTC2ET (UTCEND, ETEND)
 CALL WNINS (ETSTR, ETEND, WNINIT)
 CALL PRSOLV (WNINIT, SOLARI, WNAIR)
 RETURN

 ENTRY SOLARI (ET, ANWIRA)
 CALL BODVAR (JUPITE, 'RADII', DMY10, RADJUP)
 CALL SPKSSB (GALIL1, ET, 'J2000', PVGALI)
 CALL SPKEZ (JUPITER, ET, 'J2000', 'NONE', GALIL1,
 . DMY20, LTJUGA)
 CALL VEQU (PVGALI (1), V1)
 X = E - LTJUGA
 CALL SPKSSB (JUPITE, X, 'J2000', PVJUPI)
 CALL SPKEZ (SUN, X, 'J2000', 'NONE', JUPITER,
 . DMY60, LTSUJU)
 CALL BODMAT (JUPITE, X, MJUPIT)
 CALL VEQU (PVJUPI (1), V2)
 X1 = X - LTSUJU
 CALL VSUB (V1, V2, DV2V1)
 CALL SPKSSB (SUN, X1, 'J2000', PVSUN)
 CALL MXV (MJUPIT, DV2V1, XDV2V1)
 CALL VEQU (PVSUN (1), V)
 CALL NEARPT (XDV2V1, RADJUP (1), RADJUP (2),
 . RADJUP (3), N, DMY130)
 CALL SURFNM (RADJUP (1), RADJUP (2),
 . RADJUP (3), N, PN)
 CALL VSUB (N, V2, DV2N)
 CALL MTXV (MJUPIT, DV2N, XDV2N)
 CALL VSUB (V, XDV2N, DXDV2V)
 CALL MXV (MJUPIT, DXDV2V, XDXDV2)
 ANGLEI = VSEP (XDXDV2, PN)
 ANWIRA = ANGLEI .GT. RLOW .AND. ANGLEI .LT. RHIGH
 RETURN
 END

FIGURE 4: FORTRAN77 CODE GENERATED BY AMPHION FROM FIGURE 3.

variable is an equality defining the variable. The translation of an
icon defined by a functional requires determining the logic speci-
fication of the function or predicate passed to the functional. For
example, in Figure 2, it must be determined which equalities and
constraints should be included in the predicate passed to thefilter
functional. This corresponds to determining the extent of the sub-
diagram that defines the dependent variableAngle-within-
Range?. In Figure 2 this subdiagram is everything between the
edges labeledindependent-varanddependent-var.

The definition of the function or predicate is determined by
finding the constraints and variables that define the dependent
variable, and then the constraints and variables that define those
variables, and so on recursively. A well-defined diagram is re-
quired to have no cycles in its definitions or constraints; this re-
quirement is enforced by the user interface. This requirement
ensures the termination of the computation for finding the subdi-
agram for a function or predicate.

The second synthesis step is to deductively synthesize an im-
plementation given the logic specification. The deductive frame-
work for synthesizing implementations from logical
specifications [2,7] works, in principle, the same for simple spec-
ifications as for specifications that include functionals andlamb-
da expressions. However, functionals andlambdaexpressions are
second-order constructs, hence requiring second-order theorem
proving for the deductive synthesis. While second-order theorem
provers can be used in interactive theorem proving where they are
guided by a human expert, they are unsuitable for automatic the-
orem proving because the search spaces are too large. Hence AM-

PHION uses a first-order theorem prover. Thus in AMPHION a logic
specification is first transformed into an equivalent first-order
form. Embeddedlambda expressions are transformed into named
functions that are deductively synthesized separately. The func-
tionals are treated as first-order functions that take named func-
tions as arguments; in the deductive synthesis of the main
program these named functions are treated as first-order objects.
Transforming embeddedlambda expressions into named func-
tions is calledclosure conversion in Appel [1]. In AMPHION,
where all variables have distinct names, and such a function is
only passed downward into an environment containing the envi-
ronment of the lambda expression, the function can be imple-
mented by anENTRY subroutine in the scope of the variables in
the main subroutine. An example is the subroutineSOLARI in
Figure 4.

During synthesis, representations must be chosen for the input
variable of thelambda expression. Note that the diagram in Fig-
ure 2 does not explicitly state the representation of TGalileo. The
current implementation of AMPHION chooses a standard represen-
tation for time called “ephemeris time”. This choice is appropriate
because most of the SPICE routines with an input time parameter
require the “ephemeris” representation. For those few SPICE rou-
tines that require other time representations, SPICE provides rep-
resentation conversion functions from ephemeris time that
AMPHION will automatically insert. The ephemeris representation
is also amenable to the arithmetic operations used in thePRSOLV
algorithm, e.g. increment by a time step and find the midpoint be-
tween two times. These operations would be difficult in some of
the other representations, e.g. character string representations of
time.

Knowledge-Based Program Optimization

This section describes future work in an area of program syn-
thesis that requires combining domain, mathematical, and algo-
rithmic knowledge. The goal is to apply various sources of
knowledge to the problem of producing more efficient and robust
programs. This section describes some of that knowledge for
NAIF domain problems similar to scheduling observation times
for the Hubble Space Telescope. The research issue is the extent
to which the application of this knowledge can be automated.
Some user guidance may be required, which raises the research is-
sue of human-computer interaction during program synthesis.

MOSS provides window operations that, if called inappropri-
ately, can be very inefficient or produce incorrect results. A MOSS

user employs knowledge about astronomy, mathematics, and the
algorithms underlying PERCY to develop a sequence of com-
mands that invoke these operations appropriately. This section
describes some of the knowledge necessary to invokePRSOLV
effectively. This requires some understanding of the algorithm
employed byPRSOLV.

The algorithm employed byPRSOLV is as follows.PRSOLV
searches each interval in the input window. The algorithm starts
at the left endpoint of an interval in the window and repeatedly in-

crements by a time step , testing for a transition in the value of
the predicate. When a transition is found, binary search is used to
locate the time of the transition to the specified accuracy.PR-
SOLV returns a subwindow of the input window.

The behavior ofPRSOLV is dependent on the time step, which
is a parameter that can be set. A large time step will allowPR-
SOLV to skip through the window rapidly. However, too large a
time step will allowPRSOLV to skip over a transition, yielding in-
correct results. For this reason,PRSOLV is guaranteed to find all
of the transitions in a window only if the time step is smaller than
the smallest time difference between two adjacent transitions oc-
curring within the window. Finding situations of short duration
would seem to require a time step shorter than the shortest dura-
tion. However, there are several knowledge-based optimization
tactics that enable large time steps to be used and still produce ac-
curate results.

A PERCY search can often be made more efficient and robust
by taking advantage of set-theoretic reformulations and domain-
specific knowledge. As an example, consider an extension of the
Galileo problem where it is also required that the Galileo space-
craft be near one of the impact sites. A naive implementation,
which might require a small timestep, would search for both a low
sunlight angle and a near location. This implementation could be
refined into the intersection of the windows found by two search-
es: one finding the time window when sunlight is low, the other
finding the time window when the spacecraft is near a site. A
search for a conjunctive predicate can be implemented as a win-
dow intersection of two searches as follows:

PRSOLV(, ,) =

 PRSOLV(, ,) ∩ PRSOLV(, ,)

This rule is useful when the transitions of the individual pred-
icates are spaced farther apart than the transitions of their con-

δ

w P1andP2 δstep12

w P1 δstep1 w P2 δstep2

junction. (Consider the case where holds in a long interval

that just barely overlaps the long interval in which holds.) If

this is the case, larger step sizes may be used in each of the two
searches than in the original search.

Another way of optimizing the search employed by PERCY is
to translate a search for a short-duration situation to a search for a
different situation that occurs at the same time. For example,
though the interval when a function is very near some particular

value may be short, the interval when the function is greater

than or equal to may be large, as is the interval when the func-

tion is less than or equal to . An astronomical example is in
finding the times when a moon is behind a planet, as seen from an
observer at a great distance. This may be a very short-duration sit-
uation; however, the predicate of the moon being on one side of
the planet describes a long-duration situation. The time when the
latter predicate makes a transition is also the time the moon is be-
hind the planet (along one dimension).

Another optimization technique that combines general pro-
gram synthesis knowledge with domain-specific knowledge is to
use necessary conditions on a situation to generate a restricted
window over which to search for the full situation, as described in
Mostow [5] and Smith [7]. Also, for certain constraints, the set of
elements satisfying the constraints can be reformulated as a gen-
erator of the elements [5]. For example, solar eclipses are of short
duration, which seems to necessitate a small time step. However,
because a necessary condition for a solar eclipse is that it occurs
during a new moon, and because new moons occur every 29 days,
the search for a solar eclipse can be restricted to set of short inter-
vals generated 29 days apart, reducing the search by a factor of 29.

CONCLUSION

This paper has described an approach to automated software
design founded on the application of formal methods to domain-
oriented software composition. Difficulties previously associated
with automating formal methods and using them with naive users
have been addressed. In particular, it was found that a diagram no-
tation that represents logic statements provides an intuitive spec-
ification language. It was also found that a theorem prover could
effectively synthesize useful programs given explicit, declarative
facts about components in a library. Future work will introduce
knowledge from a variety of domains into the optimization pro-
cess. Prototype AMPHION applications are being developed for
other domains, namely space shuttle flight planning and numeri-
cal aerodynamic simulation.

ACKNOWLEDGMENTS

Andrew Philpot implemented the graphical interface in Gar-
net. Arthur Reyes helped improve the exposition of this paper.
Thanks are due to the NAIF group at JPL, and especially to Bill
Taber, who created the PERCY and MOSS code with Ian Under-
wood, and patiently described it to us, and to Chuck Acton, head
of the NAIF group, for his advice and for allowing his group to
work with us.

P1

P2

x

x

x

REFERENCES

[1] Appel, A., 1992,Compiling with Continuations,Cambridge
University Press, Cambridge, Chapters 2.4 and 10.8.

[2] Lowry, M., Philpot, A., Pressburger, T., and Underwood, I.,
1994, “A Formal Approach to Domain-Oriented Software
Design Environments”, inProc. 9th Knowledge-Based Soft-
ware Engineering Conference, Sept. 20-23, Monterey, Cali-
fornia, pp. 2, 48-57.

[3] Lowry, M., Philpot, A., Pressburger, T., and Underwood, I.,
1994, “AMPHION: Automatic Programming for Scientific
Subroutine Libraries”, inProc. 8th Intl. Symp. on Methodol-
ogies for Intelligent Systems, Charlotte, North Carolina, Oc-
tober 16-19.

[4] Manna, Z. and Waldinger, R., 1992, “Fundamentals of De-
ductive Program Synthesis,”IEEE Transactions on Software
Engineering, Vol. 18, No. 8, August 1992, pp. 674-704.

[5] Mostow, J., 1983, “Machine Transformation of Advice into
a Heuristic Search Procedure” InMachine Learning: An Ar-
tificial Intelligence Appraoch, eds. R. S. Michalski, J. Car-
boneel, and T. Mitchell, Morgan Kaufman, Los Altos, Calif.,
pp. 367-404.

[6] Reasoning Systems, 1992,REFINE User’s Guide. Reason-
ing Systems, Palo Alto, Calif.

[7] Smith, D., 1991,“KIDS—A Knowledge-Based Software
Development System”, inAutomating Software Design,
Lowry, M. and McCartney, R., eds, AAAI Press, Menlo Park,
Calif., 1991, pp. 483-514, see pp. 494.

[8] Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., and
Underwood, I., 1994, “Deductive Composition of Astronom-
ical Software from Subroutine Libraries”, in12th Conference
on Automated Deduction, June 28-July 1, Nancy, France.

[9] Green, C., 1969, “Application of Theorem Proving to Prob-
lem Solving”, inProc. Intl. Joint Conf. on Artifical Intelli-
gence,May 7-9, Washington D.C., pp. 219-240.

